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SUMMARY

The performance of Model Reference Adaptive Control (MRAC) is

studied in numerical simulations with the objective of understanding

the effects of differences between the plant and the reference model.

MRAC is applied to two structural systems with adjustable error

between the reference model and the actual plant. Performance indices

relating to control effort and response characteristics are monitored
in order to determine what effects small errors have on the control

effort and performance of the two systems. It is shown that

reasonable amounts of error in the reference model can cause dramatic

increases in both the control effort and response magnitude (as

measured by energy integrals) of the plant

INTRODUCTION

During the past decade, researchers have shown much interest in

control and identification of large flexible structures, with emphasis

on Large Space Structure (LSS). Furthermore, our inability to model

these large structural systems accurately has generated extensive

research into adaptive controllers capable of maintaining stability in

the face of large structural uncertainties as well as changing

structural characteristics. However, most of this research has been

strictly theoretical in nature (e.g., refs. i-i0) and experimental

verification (e.g., refs. 11,12) of the proposed theories is lagging

far behind. In addition, the focus of most theoretical research has

been on designing stable adaptive controllers with little or no

concern for the issue of control effort.

While it is possible to design an adaptive controller that will

stabilize a structure even if we have a very poor model, the control

effort may be very high. The objective of the present paper is to

study the correlation between the control effort and the fidelity of

the structural model. Specifically, the first step is to demonstrate

that the effort associated with an adaptive control system is

sensitive to knowledge of the structure. For this purpose the popular

Model Reference Adaptive Control (MRAC) method was selected and two

examples were studied in detail. In this paper, we monitor four

performance indices: Maximum Control Force, Quadratic Control Effort,



Kinetic Energy, and Potential Energy. These performance indices
allow us to evaluate the effects of errors in the theoretical model.

Numerical simulations were used to see how each performance index

changed when errors were introduced into the system. Section II

summarizes the MRAC algorithm, section III shows how a simply

supported beam can be sensitive to the choice of Reference Models,

section IV presents the sensitivity of a more complicated structure

and section V provides concluding remarks.

MODEL REFERENCE ADAPTIVE CONTROL

Adaptive controllers generally fall into two classifications,
direct and indirect. The basic difference between the two

classifications is system identification. Indirect adaptive methods

(e.g., refs. 9-10, 13-14) require system identification before the

adaptive gains in the controller can be updated, whereas direct

methods (refs. 1-8, 11-12) do not use system identification. MRAC is

one of the more popular direct methods (refs. 1-7). MRAC methods

adaptively tune the controller gains, forcing the actual system to
follow some ideal reference model. Because this reference model can

be of lower order than a typical model of the actual system, this

method is very attractive for applications to LSS, where structural

models can be of very high order and require truncation for use with

any controller. Figure 1 shows a block diagram of a generalized MRAC

system (ref. 6).

PROBLEM FORMULATION

The LSS, or controlled plant can be represented in standard state

space form:

Xp(t) - ApXp(t) + BpUp(t) (la)

Yp(t) - CpXp(t) (Ib)

where X _ R "p, U e RM, Y £ RM and A , B , C are of appropriate
• .p p. p p p . p

dzmenszons. It zs assumed that (An, B_) zs controllable, (An, C_) zs
observable, and that the number ofWinp_ts (M) is equal to t6e n_mber

of outputs.

A stable reference model which specifies the desired performance

of the plant is also described by a state space representation,



Xm(t) - AmXs(t) + BsUm(t) (2a)

Ym" CmXm(t) (2b)

where X _ RUm'Um£ RM' Ym6 RM and A , B , Cm are of appropriatem _ m
dimensions. For practical application to LSS the following condition
must be true

Np >> Nm (3)

To aid in measuring how close the actual plant is to the reference

model, the output error between the plant and the reference model is
defined as

ey(t) - Ym(t) - Yp(t) (4)

Since the output error tells us how close the actual plant is to the

desired performance of the reference model, the objective of any

adaptive update scheme is to design a control input which forces the

output error to zero asymptotically.

ADAPTIVE LAW

The adaptive mechanism used in this paper is based on the work of

Sobel, Kaufman and Mabius (ref. I) and has no provisions for the

destabilizing effects of noise. However, it has found important

application to LSS. The control input is written as,

Up(t) - K(t) r(t) (5)

where

IT T T] (6a)rT - ey, X m,Um

K(t) - [%(t), _x(t), _u(t)] (6b)

The adaptive gain K(t) is calculated as the sum of a proportional

component Kpr(t ) and an integral component Kl(t ) so that

K(t) - Kpr(t ) + K,(t) (7)

The adaptive laws for Kpr(t ) and Ki(t ) are given as

Kpr(t) . eyrTT * (8)
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KI (t) - eyrTT (9)

where T* and T are time invariant weighting matrices of appropriate

dimension chosen by the designer. Sufficient conditions for global

stability are presented in (ref 1-3, 11-12) and will only be
summarized here.

i. T & T* > 0

2. there exist P = pT > 0 and Q = QT > 0 such that

T
PBp - Cp

PAp + AT p - -Q
p

Condition 1 is met simply by choosing appropriate matrices (i.e., the

identity matrix). Condition 2 is equivalent to the assumption that

the open-loop plant transfer function matrix

Z(s) = Cp(SI - Ap)-IBp (10)

is strictly positive real. This condition is met for any LSS having

small but non-zero inherent damping and colocated sensors and
actuators.

CONTROL EFFORT

In order to assess the added implementation costs of MRAC in

systems where reasonable amounts of error would occur, we have adopted

the following procedure. The first step is to choose a linear system

to represent the actual physical system. Next, we create a reference

model which specifies the desired performance and has some measurable

amount of error. Previous examples, see (ref. 2), have chosen the

reference model to be a reduced model of the actual plant with the

same frequencies and mode shapes plus extra damping. While this would

be the ideal situation, it is not probable that we would have an exact

theoretical model. For this reason we have intentionally introduced

errors between our reference models and the actual plant model. To

aid in quantifying the increased effort due to the errors, we

calculate the following performance indices:

the maximum control force required by each actuator,



"_× i = I,...,MU i = Max( I Ui(t) I ) 0 < t < tfinat,
(lZ)

the quadratic control effort,

Ut0ta [ - ]UTUdt
(12)

the integral of the potential energy of the system,

I_XT KXdtPE -
(13)

and the integral of the kinetic energy

1 _)(TMXdtKE -
(14)

where the first two performance indices measure the control effort and

the second two provide information about system response

characteristics. These performance indices allow us to see how

increments of error affect the cost and performance of the system.

SIMPLY SUPPORTED BEAM EXAMPLE

The first example is a simply supported beam with a variable

concentrated mass at the mid-span and a velocity sensor and force

actuator colocated at one-sixth span (see figure 2). This simple

structure is similar to a structure used by Bar-Kana, Kaufman & Balas

(ref. 2) for demonstrating the MRAC method. The only difference

between the present structure and the structure of reference 2 is the

variable concentrated mass. The variable concentrated mass at the

mid-span was used to create error in the system due to unknown mass

characteristics. The concentrated mass was varied between 0-20% of

the mass of the beam, with zero mass corresponding to an exact

reference model. It should be noted that the reference model was

held constant while the plant model was varied to match changes in the

concentrated mass.

The beam was modeled with 12 beam finite elements with a

displacement and rotational Degree of Freedom (DOF) at each nodal

point. The coupled equations of motion are written in standard form

as

Mq + Cq + Kq = F (15)

where M and K are the mass and stiffness matrices respectively, and C

is the damping matrix calculated from assumed inherent damping ratios

_i" Using modal analysis the equations are transformed from a set of

coupled equations in physical coordinates to a set of
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coupled equations in physical coordinates to a set of uncoupled

equations in modal coordinates

+ 2_X + .'iX - B°F

where

(16)

the ei's are the undamped natural frequencies

_n " diag[_1_,_2_,---,_12_2]

13° " ['_s,1,4'5,2, .. • ,_s,12] v

and the _,i's are the fifth element of each eigenvector (the sensor
and actuator are at the 5 th DOF) normalized so

_TM_ - I

Equation 16 is rewritten in state space form as

[xp]12 p.p,iIxpl[Bo1Xp " I 0 JLXpj + ;P Up

(17a)

where the subscript p denotes the equations apply to the plant. The

reference model takes the same form,

. + Um (18a)

Xm I 0 J[X,]

where the subscript m applies to the reference model.

For the purpose of numerical simulations we must reduce the size

of the actual plant. In this example (as in ref. 2) we consider only



the first three modes of the actual plant and choose a reference model
that includes only 2 modes. Damping ratios in the plant are assumed
to be 0.01 while the desired damping ratios of the reference model are
set at 0.05. All other parameters (length, EI, etc.) are set to 1.0
for convenience in calculations. In the present study we consider
only initial condition responses. The first three modal states were
initially set to 1.0, while all others were set to zero. From figures
3-4 it can be seen that the controller does an excellent job of
forcing the actual plant to follow the reference model. However, from
Table 1 it can be seen that the addition of the concentrated mass,
i.e. errors between the actual plant and the reference model, can
produce very large increases in the maximum control force and control
effort needed for the controller to function. For example, a
concentrated mass weighing 20% of the beam weight causes a factor of
six increase in the quadratic control effort. This large increase in
control effort demonstrates a need to find a method for choosing a
good reference model.

SLEWING GRID EXAMPLE

The Virginia Tech slewing grid laboratory structure shown in

figure 5 is a more complex example. The slewing grid was designed to

have characteristics of LSS, namely closely spaced modes, low

vibration frequencies, and low inherent damping. Three pairs of

velocity sensors and force actuators are colocated at joints 3,4 &5.

The slewing grid was designed to include a zero frequency rigid body

rotation mode about the shaft, but this has never been realized

because of bearing friction and slight misalignments of the rotational

shaft. Although the geometry of the structure is symmetric about a

horizontal line through joint 3, the vibration mode shapes are not

similarly symmetric because the structure's weight causes asymmetric

member gravity loading and therefore asymmetric stiffness

distribution. It was considered desirable in the design phase to have

at least one beam member in substantial compression relative to its

buckling load, both to reduce the overall structural stiffness and to

permit the possibility of nonlinear response. The lower horizontal

member carries the largest compressive load, being compressed to about

70% of its Euler (pin-ended) buckling load. Great effort has been

taken to accurately predict the loads in each member of the structure.

However, each joint is held in place with a nut and bolt assembly and

the process of tightening these bolts induces forces which we have

been unable to determine accurately. Therefore our current Finite

Element Model (FEM) only takes gravity forces into account. The

rotational shaft was modeled by 8 beam finite elements with a

displacement and rotation DOF at each node. Each of the 5 members of
the structure is modeled with 4 finite elements which include a

transverse displacement, an in-plane rotation, and an out of plane

rotation at each node. The complete FEM has 72 DOF and the coupled

equations of motions can be written



MX + cX + (K + G)X = F (19)

where G is the geometric stiffness matrix. To make the problem more

manageable we created a reduced eleventh order model using the Guyan

Reduction (ref. 15). The linear equations for the slewing grid can

be written (in physical coordinates)

I (20a)

where

0 Xp (20b)

= Kp + Gp (21)

Mp, Cp, Kp, and G are the reduced mass, damping, stiffness and
geometric stiffness matrices, and B is (22 X 3) matrix with only 3

non-zero elements for mapping the c_ntrol inputs to the proper DOF at

joints 3,4,5.

The accuracy of the frequencies and modes predicted by the FEM is

not good. During the past two years, great pains have been taken to

find a FEM which would accurately model the structure. However all

the non-linearities in the structure, such as friction in the bearing,

large gravity loading in the lower horizontal member, and the loads

induced by tightening the bolts at each joint of the structure, have

resulted in a modeling nightmare. Table 2 compares frequencies

predicted by our best FEM to the experimental vibration frequencies,

and figures 6-9 compare several experimental and theoretical mode

shapes. The difficulty in accurately modeling this structure was the

driving force behind the decision to apply adaptive control to the

slewing grid. The challenges of modeling the slewing grid may be

similar to those we will face when we begin to model LSS.

In order to study the performance of MRAC for this case we first

had to choose a model for simulating the actual plant. Our efforts to

model the slewing grid as accurately as possible resulted in several

FEM with varying degrees of accuracy. The most accurate model used

experimental frequencies and mode shapes in a correction method

proposed by Baruch (ref.16) to force the theoretical model to have

exact experimental frequencies. The least accurate model was the

standard FEM with no corrections. With this in mind we chose the most

accurate FEM to simulate the plant and a linear combination of the



most accurate and least accurate model as the reference model.

reference model is described by the following equation.

The

Ref. Model- _(standard FEM) + (l-s)(corrected model) (22)

Thus we can vary the amount of error between the reference model and

the actual model and monitor the control effort and system response as

the error increases (_ = 0---Perfect Modeling , _ = 1 Max. Error).

Damping ratios for the simulated plant were obtained experimentally

while the damping ratios for the reference model specify the desired

performance (see table 3).

In addition to varying the parameter _, we also varied the initial
conditions of the structure. In the first simulation the structure

was deformed into the second mode shape (see figure 6) and released.

Table 4 shows that introducing errors into the reference model had a

significant effect on the maximum force at joint 3 and the quadratic

control effort. The maximum force required at joint 3 is i0 times

larger at _ = 1.0 than at _ = 0.0, and the quadratic control effort is

increased by a factor of 27 over the same interval. In the second

simulation the structure was deformed into the theoretical fourth mode

shape (see figure 8) and released. Table 5 shows that introducing
errors in this case also causes dramatic increases in control costs.

For example, at the point of maximum error (_ = i), the total control

effort needed increased by almost 2500%, the maximum control force

required by actuator 3 increased over 600%, and the amount of

potential and kinetic energy in the system increased over 550%.

CONCLUDING REMARKS

The performance of Model Reference Adaptive Control (MRAC) was

studied in numerical simulations with the objective of understanding

the effects of differences between the plant and the reference model.

MRAC was applied to two structural systems with controlled error

between the reference model and the actual plant. Performance indices

relating to control effort and response characteristics were monitored
in order to determine what effects small errors have on the control

effort and performance of the two systems. It was shown that
reasonable amounts of error in the reference model can cause dramatic

increases in both the control effort and and response magnitude (as

measured by energy integrals) of the plant.
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TABLE 1

SUMMARY OF PERFORMANCE MEASURES FOR VARYING

AMOUNTS OF MASS ERROR IN THE SIMPLY SUPPORTED BEAM EXAMPLE

% ERROR MAXIMUM FORCE TOTAL QUADRATIC

CONTROL EFFORT

0.0 380 11,422

i0.0 540 27,486

20.0 920 72,263

SUMMARY

TABLE 2

OF THEORETICAL VS EXPERIMENTAL FREQUENCIES

FOR THE SLEWING GRID STRUCTURE

MODE #

FREQUENCIES (Hz)

% ERROR
THEORETICAL EXPERIMENTAL

1 0.36 0.42 16.67

2 1.37 1.45 5.84

3 3.00 2.88 4.00

4 4.47 5.39 20.58

5 6.02 6.41 6.48

6 6.69 6.88 2.84

7 9.79 9.05 7.56

8 11.52 10.18 11.63

9 13.11 13.56 3.43

i0 15.35 14.90 2.93

ii 21.16 15.37 27.36



TABLE 3

DAMPINGRATIOS FORTHE MODELSOF THE SLEWINGGRID

MODE#

1

2

3

4

5

6

7

8

EXPERIMENTAL
FREQUENCY

(HZ)

0.42

1.45

2.88

5.39

6.41

6.88

9.05

10.18

EXPERIMENTAL

DAMPING RATIOS

0.ii0

0.015

0.011

0. 008

0.003

0.011

0.003

0.003

DAMPING RATIOS

FOR THE

REF. MODEL

0.15

0.05

0.05

0.05

0.05

0.05

0.05

0.05

9 13.56 0.002 0.01

i0 14.90 0.002 0.01

ii 15.37 0.002 0.01

TABLE 4

SUMMARY OF PERFORMANCE MEASURES FOR VARYING AMOUNTS

OF ERROR IN THE SLEWING GRID

INITIAL CONDITIONS = MODE SHAPE 2

MAXIMUM FORCE (LBS)

ALPHA

JT. 3 JT. 4 JT. 5

0.00 0.0182 0.022 0.021

0.25 0.0596 0.028 0.025

0.75

0.50 0.1090 0.038

0.1520 0.048

1.00 0.1825 0. 057

0.035

0.045

0.058

QUADRATIC

CONTROL

EFFORT

LBSZ-SEC

0.00044

0.00107

0.00299

0.00742

0.01250

KINETIC

ENERGY

INTEGRAL

LB-IN-SEC

0.116

0. 114

0.112

0.iii

0. ii0

POTENTIAL

ENERGY

INTEGRAL

LB-IN-SEC

0.117

0. 119

0. 120

0.122

0.125



TABLE 5

SUMMARY OF PERFORMANCE MEASURES FOR VARYING AMOUNTS

OF ERROR IN THE SLEWING GRID

INITIAL CONDITIONS = MODE SHAPE 4

ALPHA
MAXIMUM FORCE (LBS)

JT. 3 JT. 4 JT. 5

QUADRATIC
CONTROL

EFFORT

LBS2-SEC

KINETIC

ENERGY

INTEGRAL

LB-IN-SEC

POTENTIAL

ENERGY

INTEGRAL

LB-IN-SEC

0.00 0.44 0.68 0.58 0.35 0.60 0.60

0.25 0.58 0.78 0.64 0.52 0.70 0.72

0.50 1.19 0.93 0.72 1.47 1.09 1.13

0.75 2.42 1.04 0.89 5.20 2.49 2.55

1.00 3.12 1.04 0.90 9.05 3.94 3.93
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g Assembly**

Steel Shaft, 1 3/8" (3.49 cm) diameter

_---Upper Horizontal*

(UH)

Diagonal*

(TD)
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Fittings

Vertical*--_

(v)

ght

Diagonal*

(DWD)
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4

Bearing Assembly**

*Aluminum Beam Members

Alloy 6061-T6

Nominal cross-section:

2" x 1/8"

(5.08 cm x 0.32 cm)

**Ball Bearings

Make: SKF

Bearing No. 478207-106

Pillow Block Flange Unit

No. FYP-106

(Bearing seals and all

grease were removed to

reduce friction.)

Figure 5

SLEWING GRID STRUCTURE
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SECOND MODE SHAPE FOR SLEWING GRID STRUCTURE
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THIRD MODE SHAPE FOR SLEWING GRID STRUCTURE
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FOURTH MODE SHAPE FOR SLEWING GRID STRUCTURE
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FIFTH MODE SHAPE FOR SLEWING GRID STRUCTURE


